
CS 421 Spring 2010 Midterm 2

Wednesday, April 7, 2010

Name

NetID

• You have 75 minutes to complete this exam

• This is a closed book exam.

• Do not share anything with other students. Do not talk to other students. Do not look
at another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of the
TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 11 pages to the exam. Please verify that you have all 11
pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Value Score

1 8

2 12

3 14 + 5 XC

4 15

5 22 + 5 XC

6 15

7 14

Total 100 + 10

1



CS 421 Midterm 2 Name:

1. (8 pts) Fill in the blanks below, giving the names of the various parts of a compiler. (Re-
call that the cylinders represent data and the boxes represent actions (i.e. functions).)

A front-end

B back-end

C lexer

D parser

E AST

F symbol table

G optimization

H code generation

2



CS 421 Midterm 2 Name:

2. (12 pts) For each of the statements below, indicate which memory management approach(es) it
describes: reference counting (RC), non-copying garbage collection (NG), or copying garbage
collection (CG). If a statement applies to more than one approach, you should write all of
the approaches it describes.

Cannot handle cyclical references

RC

Uses a “free area” model to represent free memory

CG

Is best for spreading out the cost of garbage collection throughout the program

RC

At any time, only half of memory is in use

CG

Unreachable memory may not be freed immediately

NG, CG

Iterates over the entire heap at once (not just reachable memory)

NG

Does not move reachable data

RC, NG

3



CS 421 Midterm 2 Name:

3. (14 pts) In class, we gave the following translation schemes for translating source programs
into an intermediate representation (IR). All but the first take an AST (expression or state-
ment) to a sequence of IR instructions.

[e] : translate expression e to IR; returns pair (IR instruction list, location of value)

[S] : translate statement S to IR

[e]x : translate expression e to code that stores value of e in variable x

[S]L : translate statement S in context of a loop or switch statement, where L is the target of
a break statement

[e]Lt,Lf : translate expression e to code that branches to Lt if e is true, or Lf otherwise (the
short-circuit evaluation scheme)

The instructions in our intermediate representation were: x = n; x = y; x = y + z (for any
operation +); JUMP L; CJUMP x, L1, L2; and x = LOADIND y.

(a) Give the following translations. (You may use functions getloc() and getlabel() to get
fresh memory locations and fresh instruction labels, respectively.)

i. [e1 + e2]

let t1, t2, t3 = getloc() in
[e1]t1
[e2]t2
t3 = t1 + t2

ii. [e1 ? e2 : e3]x (for full credit, use the short-circuit scheme for e1)

[e1]L1,L2

L1: [e2]x
JUMP L3
L2: [e3]x
L3:

iii. [e1 && !e2]Lt,Lf (e2 should not be evaluated if e1 is false)

[e1]L1,Lf

L1: [e2]Lf,Lt

4



CS 421 Midterm 2 Name:

(b) (5 pts extra credit) Give IR code for a for loop. A for loop has the form “for(S1; e; S2) S3”,
where S1 is executed before the loop begins, the loop ends when e evaluates to false, S2

is executed at the end of each iteration of the loop, and S3 is the loop body. For full
credit, use the short-circuit scheme for e.

[S1]
JUMP L2
L1: [S3]L3

[S2]
L2: [e]L1,L3

L3:

5



CS 421 Midterm 2 Name:

4. (15 pts) Write expressions in APL for the following calculations. You may use either real
APL syntax or the syntax you used for MP 8. (The APL reference sheet is included at the
end of this exam.)

(a) 3 times the product of the elements of the vector V

3 * */V

(b) A vector containing only the non-negative elements of the vector V

(V ≥ 0) / V

(c) An m-by-n matrix filled with the number r

(m,n) ρ r

(d) The identity matrix of size n

(n,n) ρ 1, n ρ 0

(e) An n-by-n matrix with 0’s above the diagonal and 1’s on and below the diagonal

�m ≥ m ← (n,n) ρ ιn

6



CS 421 Midterm 2 Name:

5. (22 pts)

(a) Give the type of the following function: fun f -> fun g -> fun x -> g (f x) x

(α→ β)→ (β → α→ γ)→ α→ γ

(b) Write an OCaml function update such that update f a b is a function that returns b
when given a as input but otherwise behaves the same as f.

let update f a b = fun x -> if x = a then b else f x

(c) Write an OCaml function double that duplicates each element of a list, using fold right
instead of explicit recursion. For example, double [1; 2; 3] = [1; 1; 2; 2; 3; 3]. Remember
that fold right has type (α -> β -> β) -> α list -> β -> β.

let double lis = fold right (fun x y -> x :: x :: y) lis []

(d) Write an OCaml function sum pairs that takes a list of pairs and returns a list containing
the sum of the elements of each pair, using map instead of explicit recursion. For
example, sum pairs [(1, 2); (3, 4); (5, 6)] = [3; 7; 11].

let sum pairs = map (fun (x, y) -> x + y)

7



CS 421 Midterm 2 Name:

(e) (5 pts extra credit) Write an OCaml function maxf that takes a function f and a list lst
and returns a pair (max, index), where max is the largest value produced by applying f
to an element of lst, and index is the index in lst of the element x such that f x = max,
where the first element of the list has index 0. If there are multiple such elements, you
may return the index of any one of them. For example, maxf (fun x -> x + 2) [1; 2; 3]
= (5, 2). You may assume that lst is never empty. You may also assume that f takes
elements of lst and returns only positive integers. Your function should use fold right
instead of explicit recursion.

let maxf f lst = fold right (fun x (m, i) -> if f x > m then (f x, 0) else (m, i+1)) lst (0,0)

8



CS 421 Midterm 2 Name:

6. (15 pts) In homework 9, you defined multisets to be functions of type α -> int; in particular,
you used the definition type ’a multiset = ’a -> int. In that homework, you defined
functions add, member, union, disjointUnion, intersection, remove, filter, and fromList. De-
fine the following additional functions on multisets:

(a) fromSet: ’a set -> ’a multiset, such that fromSet s returns a multiset containing 1 copy
of each element in s. Recall that the set type is defined by type ’a set = ’a -> bool.

let fromSet s = fun x -> if s x then 1 else 0

(b) count: ’a multiset -> ’a list -> int, such that count m lst returns the total number of
occurrences of elements from lst in m. You may assume that lst contains no duplicate
elements.

let count m lst = fold right (+) (map m lst) 0

(c) subtract: ’a multiset -> ’a multiset -> ’a multiset, such that subtract a b has n copies
of the value x if a has p copies and b has q copies and n = p - q. If b has more copies
of x than a, then subtract a b should have 0 copies of x.

let subtract a b = fun x -> max (a x - b x) 0

9



CS 421 Midterm 2 Name:

7. (14 pts) Write a function object in Java for the OCaml function apply pos, defined as follows:

apply pos f lst = map (fun x -> if x > 0 then f x else x) lst

For simplicity, we assume that lst is a list of integers. As in the OCaml code, your Java
solution should call Map.map, which is given here:

interface IntFun {
int apply (int n);

}

class Map {
static int[] map (IntFun f, int lis[]) {

int lis2[] = new int[lis.length];
for(int i = 0; i < lis.length; i++)

lis2[i] = f.apply(lis[i]);
return lis2;

}
}

class Apply_Pos {
static int[] apply_pos (final IntFun f, int lis[]) {

// complete this method
IntFun g = new IntFun(){
int apply(int n){

return n > 0 ? f.apply(n) : n;
}

};
return Map.map(g, lis);

}
}

10



CS 421 Midterm 2 Name:

APL Reference

Operation Expression Value

Sample data A ; a 2,3-matrix
1 2 3
4 5 6

V ; a 3-vector 2 4 6
C ; a logical 2-vector 1 0
D ; a logical 3-vector 1 0 1

Arithmetic A *@ A
1 4 9
16 25 36

V -@ (newint 1) 1 3 5

Relational A >@ (newint 4)
0 0 0
0 1 1

Reduction !+ V 12
maxR A 3 6

Compression D % V 2 6
C % A 1 2 3 (a 1,3-matrix)

Shape shape A 2 3
Ravelling ravel A 1 2 3 4 5 6

ravel (newint 1) 1

Restructuring rho (shape A) V
2 4 6
2 4 6

rho (shape V) C 1 0 1
Catenation A ^@ C 1 2 3 4 5 6 1 0
Index generation indx (newint 5) 1 2 3 4 5

Transposition trans A
1 4
2 5
3 6

Subscripting V @@ (indx (newint 2)) 2 4
A @@ (newint 1) 1 2 3 (a 1,3-matrix)

(trans A) @@ (indx (newint 2))
1 4
2 5

11


